
Planning for Control

MARK DRUMMOND
JOHN BRESINA

AI RESEARCH BRANCH, MAIL STOP 244-17
NASA AMES RESEARCH CENTER

MOFFETT FIELD, CA 94035

NASA Arnes Research Center
Artificia I I ntel I igence Research Bra nc h

Technical Report FIA-91-18

July 1990

Planning for Control

Mark Drummond* and John Bresinat
Sterling Federal Systems

AI Research Branch, NASA A m e s Research Center
Mail Stop: 244-17, Moffett Field, CA 94035 U.S.A.

July 1990

Abstract
The study of automated planning within traditional artificial intelligence has produced a useful set of techniques
for synthesizing plans of action. This traditional study of planning has concentrated on the problem of plan
synthesis and, as a result, has left unaddressed many important issues involved with closed-loop plan execution.
In contrast, traditional control theory has produced a set of analytical tools for the construction of robust
control systems. This paper addresses problems that lie at the boundary of planning and control, from an
AI planning perspective. Such problems involve the active selection of relevant actions through automated
planning and also require the robust execution of the actions thus selected.

This paper appears in
The PToceedings the Fifth IEEE International Symposium on Intelligent Control,

published by the IEEE Computer Society Press.
(Philadelphia, PA; September 5-7, 1990)

'This work has been partially supported by the Artificial Intelligence Research Program of the Air Force Office of Scientific

'Also affiliated with the Computer Science Department at Rutgers University.
Research.

Planning for Control

Mark Drummondt and John Bresinas

AI Research Branch, NASA Ames Research Center
Mail Stop: 244-17, Moffett Field, CA 94035

Sterling Federal Systems

Abstract
The study of automated planning within tradi-
tional artificial intelligence has produced a use-
ful set of techniques for synthesizing plans of ac-
tion. This traditional study of planning has con-
centrated on the problem of plan synthesis and, as
a result, has left unaddressed many important is-
sues involved with closed-loop plan execution. In
contrast, traditional control theory has produced
a set of analytical tools for the construction of ro-
bust control systems. This paper addresses prob-
lems that lie at the boundary of planning and con-
trol, from an AI planning perspective. Such prob-
lems involve the active selection of relevant actions
through automated planning and also require the
robust execution of the actions thus selected.

Introduction
According to the field of Artificial Intelligence, plan-
ning is the task of selecting and sequencing actions.
Actions are selected on the basis of their goal-achieving
abilities, and are subsequently sequenced to ensure
that the goals for which the actions have been selected
are indeed achieved. The output from an AI planner is
a plan, generally represented as a partially ordered set
of actions. The processes of plan generation and plan
use are typically quite distinct in the AI view; once a
complete plan has been generated, it is handed off to
a separate system for execution. The execution sys-
tem is expected to follow the plan of action if possible.
If the plan works, the original goal, as posed to the
planner, is achieved; if the plan fails, the plan executor
reports this back to the planner and the cycle of plan
generation and execution is repeated.

Together, the planner and executor can be viewed as
a “control system” that accepts a goal and repeatedly
attempts to reach a state in which this goal is satisfied.

$This work has been partially supported by the Artificial
Intelligence Research Program of the Air Force Office of
Scientific Research.

ZAlso affiliated with the Computer Science Department
at Rutgers University.

For a variety of reasons, such a system will not work
for a usefully general range of problems. This paper
explains why. The next section outlines the capabili-
ties of current plan generation and execution systems.
Following this, a sample planning and control prob-
lem is defined and then used to show where traditional
AI planning fails. The failure of traditional planning
is used to motivate a discussion on aspects of a new
approach to the relationship between plan generation
and plan execution.

Traditional AI Planning and Execution
A traditional AI planner is given a variety of informa-
tion from which it is expected to manufacture plans.
It is given a set of operator schemata describing ac-
tions that can be taken by the execution system, a set
of facts describing the execution system’s current envi-
ronment, and a goal to achieve. Operators are typically
expressed as partial functions from one set of facts, or
initial state, to another set of facts, or successor state.
While the state-based method is not the only way of
expressing operators, it has received significant study
and use in the literature.

A goal is a predicate that must be made true at
some point in the future. Typically, the predicate is a
conjunction of non-negated facts, and the goal is said
to be achieved by a plan when the execution of the
plan can produce a state in which the predicate wil l be
true. The plan generated by a planner must achieve
the given goal, and additionally, it must be composed
of the given operator schemata, suitably instantiated
and ordered; further, the plan must be applicable in
the execution system’s current environment.

The inputs to a planning algorithm are a set of o p
erator schemata, an initial state, and a goal. If the
input languages for operators, states, and goals are suf-
ficiently expressive, then there is no algorithm which
can produce a plan in time polynomial in the size of
the inputs. This isn’t surprising, since planning prob-
lems can encode tasks of general purpose computa-
tion (Chapman, 1985). Thus in order to synthesize
plans, planners must seamh through a space of al-
ternatives, considering various possible solutions, re-

Figure 1: Problem Initial State (left) and Problem Goal State (right)

jecting some, pursuing others. To be useful, a plan-
ner must ruthlessly prune its search space: as with
any other combinatorially explosive problem, heuris-
tics must be employed to effectively control search. In
traditional AI planning, a heuristic which was found
to be particularly useful for planning problems was
means-ends analysis (Newel1 & Simon, 1963). This
heuristic was sanitized and popularized by the STRIPS
system (Fikes & Nilsson, 1971), and versions of means-
ends analysis have been used extensively ever since.

During search, most planners represent a plan as a
partially ordered set of actions. A partially ordered
plan is typically used as shorthand: all total orders
consistent with the partial order are considered accept-
able. For execution purposes however, plans are often
compiled into another form. Abstractly, the form is
that of a function which maps a state into the action
that should be performed in that state.

For a totally ordered plan, a state-to-action function
can be compactly represented as a triangle table (Fikes,
Hart, & Nilsson, 1972). The triangle table format gives
an execution system the ability to index the action
most appropriate to execute in its current state. Using
a triangle table, an execution system will sometimes
repeat failed actions and skip actions in the sequence
whose execution is no longer necessary.

In terms of state coverage, the logical extreme of a
triangle table has been called a universal plan (Schop-
pers, 1987). In the abstract, a universal plan is a total
function from the space of states to possible actions;
that is, the plan that the function characterizes tells
the execution system what to do in all possible states.
A universal plan is an interesting theoretical extreme,

and can serve as a holy grail to planners concerned with
absolute plan robustness. Of course, for domains of re-
alistic complexity, knowledge and time will be l i i t ing
resources: it will often be impossible to completely de-
fine the space of domain states in advance due to lack
of knowledge; also, even when the domain can be ade-
quately defined in advance, the computational cost of
fmding an action for each state can be prohibitively
expensive (Ginsberg, 1990).

A Planning and Control Problem
There are several commonly acknowledged liitations
of traditional AI planning. This section presents a
“simple” planning and control problem for which tra-
ditional AI techniques prove inadequate. The reasons
why they prove inadequate are addressed in the next
section.

Let us consider a domain in which the environment
is a two-dimensional grid of cells populated with tiles
and a single agent. A tile is a named polygon which fits
in a single cell. No matter where the agent is, it can
sense the contents of each cell at will. The agent fits in
a single cell and has four grippers which extend in the
four compass directions. The agent can move horizon-
tally or vertically and can grasp a tile in a horizontally
or vertically adjacent cell; the agent can always release
a tile that it is grasping.

In addition to the agent-executable actions, there is
an external event over which the agent has no control;
this event corresponds to a “gust of wind”. Winds o p
erate as vectors of force originating from one of the four
grid borders. A tile can be “blown” by a gust of wind
only if the following two conditions hold: (i) the path

Figure 2: Wind Break Solution (left) and Tile Buttress Solution (right)

between the tile and the wind’s origin is clear; and (ii)
the cell into which it would be blown is empty. There
is a delay specified that applies to all winds, indicating
the time lag between successive gusts. Additionally,
each of the four directions is assigned a number indi-
cating the probability that a gust of wind will come
from that direction.

For example, if the gust delay is 5 minutes and the
probability of a south wind is 0.75 and of west wind is
0.25, then every 5 minutes there will be a gust of wind
and 75% of those gusts will come from the south and
25% will come from the west.

Let’s consider an example problem in this domain
which is posed to the agent at 11:52 AM. The current
state of the world is depicted in the left half of Figure 1;
the agent is in the lower left corner. In this problem,
the gust delay is 10 minutes and all gusts come from
the west. The goal of the agent is to maintain the
configuration of triangular shaped tiles (including the
empty inner cell) illustrated in the right half of Figure 1
from noon till midnight. Due to the west wind, simply
assembling the goal configuration will not suffice; tiles
A, C, and D could be blown from their goal locations
between noon and midnight.

One way to prevent the wind from disturbing the
goal configuration is to construct a stable wind break
using tiles E, F, and G; this type of solution is shown
in the left half of Figure 2. The right half of Fig-
ure 2 shows an alternate solution using a combination
of wind breaks and tile buttresses.

Limitations of Traditional AI Planning
How would traditional AI planning address such a
problem? The goal languages of traditional planners
do not easily allow for the expression of goals with tem-
poral extent, so it would be difficult to express the re-
quirement that tiles A, B, C, and D remain in their goal
locations from noon until midnight. Traditional AI
planning has used domains such as the blocks world to
study the role of heuristics like means-ends analysis. A
typical goal would call for the achievement of a certain
block assembly. Such goals can be effectively managed
by means-ends analysis, since the relationship between
an action’s effects and the reason for including that ac-
tion in a plan is relatively straightforward. However,
for the problem considered here, where the goal is one
of maintenance, the relationship between the effects of
actions and the satisfaction of the overall goal is less
direct. Means-ends analysis requires extensions to be
used on goals of maintenance.

It would also be difficult for a traditional planner to
represent and reason about the winds that are part of
this problem. In traditional AI planning, it is assumed
that the only source of change in the world is the execu-
tion of a plan step. Traditional planning does not pro-
vide reasoning mechanisms for exogenous events; this is
especially true for our problem, where the winds occur
with statistical regularity. If one is unable to represent
the statistical properties of the winds, then one will
also be unable to exploit this information to control
search. All gusts are not equally likely, so search can
focus first on those that have the highest probability
of occurring. Traditional planning makes no provision
for the use of probabilities in controlling search.

A “closed-loop controller” based on traditional AI
planning ideas must generate a complete plan prior to
execution. The plan will be passed to the executor for
physical realization, and error reports will be fed back
to the planner. In response to an error the planner
will return another complete plan and begin the cy-
cle anew. This approach, while abstractly adequate,
will not work when there are tight deadlines associ-
ated with the problem’s goals. If the planner has not
produced a complete plan by noon, then the executor
will have no plan to execute and thus will be unable
to take action in service of the goal. When the total
time taken to produce and execute a complete plan vi-
olates a given deadline, the only workable approach is
to allow execution to begin before planning is finished.

ERE: Extending the Traditional
Framework

The Entropy Reduction Engine project is our on-going
research effort concerned with the effective integr*
tion of planning, scheduling, and control. This section
briefly examines aspects of the ERE approach which
overcome the l i t a t i ons of traditional AI planning dis-
cussed in the previous section.

As an extension to simple goals of achievement, our
approach employs a language of behavioral constraints
which is based on a branching temporal logic (Drum-
mond, 1989). Here is a behavioral constraint, or BC,
that expresses the goal in the problem presented above.

(maintain
(and (t i le- loc A (3 2))

(t i le- loc B (4 3))
(t i le- loc C (2 3))
(t i le- loc D (3 4))
(cell-empty (3 3)))

1200 2400)

The predicate (t i le- loc A (3 2)) indicates that the
tile denoted by A be at the grid location denoted by
the pair (3 2). The predicate (cell-empty (3 3)) is
used in the obvious way. The maintain part of the BC
applies to the conjunction of tile location predicates
and the cell empty predicate; this conjunction must
be true from the time denoted by 1200 until the time
denoted by 2400.

In order to consider future possible courses of ac-
tion, our planner needs a causal theory for each domain
of application. A causal theory is a set of operator
schemata which defines both the actions that are con-
trollable by the system and the exogenous events over
which the system has no control. In our framework, a
causal theory describes the different possible outcomes
of an action or event and their associated probabili-
ties. The inclusion of probabilities within our operator
language is a significant extension to traditional repre-
sentations.

One part of the planner, the projector, explores var-
ious possible futures by repeatedly finding applicable

operators and applying them to produce new hypothet-
ical states. The projector creates a directed acyclic
graph called a p-ojection where each node denotes a
domain state and each arc is labeled with a domain
operator. Projection associates a duration with each
operator application and uses this to calculate a time
stamp for the resulting state. The process of creating
a projection from a causal theory is called temporal
projection.

A path in a projection graph denotes a future pos-
sible behavior. Projection paths which satisfy a given
behavioral constraint are compiled into a set of Sit-
uated Control Rules, or SCRs (Drummond, 1989).
These are if-then rules, in which the antecedent refers
to facts about the execution system’s environment and
the current behavioral constraint, and in which the
consequent contains a set of alternative operators to
execute. Available SCRS indicate to the executor those
actions which will lead to the eventual satisfaction of
its current behavioral constraint. Our execution sys-
tem always checks to see if any existing SCRS are ap-
propriate to the current state and given behavioral con-
straint. If so, the SCRs’ advice about what to do next
is heeded.

Our approach to SCR synthesis requires two phases
of temporal projection. The first phase is carried out
by an algorithm called traverse, and the second phase
by an algorithm called robustify. Our traverse algo-
rithm uses what we call “behavioral constraint strate-
gies” to help incrementally produce executable SCRs.

A behavioral constraint strategy (or BC strategy) is
a partial order over a set of behavioral constraints.
Behavioral constraint strategies for a given behavioral
constraint are produced using domain- and problem-
specific planning expertise. The process is beyond the
scope of this paper; Bresina and Drummond (1990)
give more information. The BC strategy constructed
for a given BC indicates a set of subproblems for the
planner to satisfy and an order in which to satisfy
them. For example, consider the following BC strat-
egy.

lst
2nd
3rd
rlth
5th
6th
7th

(achieve (t i le-loc G (2 2)))
(achieve (t i le-loc A (3 2)))
(achieve (t i le- loc F (I 3)))
(achieve (t i le- loc C (2 3)))
(achieve (t i le-loc B (4 3)))
(achieve (t i le- loc E (2 4)))

(achieve (t i le-loc D (3 4)))

This strategy happens to be totally ordered, and could
be used by the system to produce the windbreak so-
lution of Figure 2. Following this strategy, the tiles
would be assembled row-by-row, bottom-to-top, and
each row would be constructed left-to-right.

Traverse synthesizes a single projection path that
satisfies a given BC strategy. The algorithm uses the

BC strategy it is given to l i t search. The partial or-
der in a BC strategy is ”parsed” by traverse; traverse
must find a path which satides each BC in the given
BC strategy, in an order consistent with the strategy’s
partial order. When working on the satisfaction of a
single BC in a strategy, traverse uses a search heuris-
tic based on a combination of path reliability and path
utility. The reliability estimate is based on the prob-
abilities of the various state-to-state transitions in the
path. Path utility is measured by estimating the re-
maining work necessary to satisfy a particular BC in
the strategy from the current end state of the develop
ing path. In traditional means-ends analysis, a situa-
tion difference measure was used to estimate the “dis-
tance” between an arbitrary state and a goal (Nilsson,
1980). Our notion of estimated remaining work gener-
alizes this simpler notion of situation difference to han-
dle goals with temporal extent (Drummond & Bresina,

Recall from our motivation in the last section that
it might be necessary for an execution system to take
action before a complete plan has been generated. Our
approach provides this capability by compiling SCRs
from each projection subpath that satisfies a BC in the
BC strategy. If necessary, the execution system can
act on these SCRs. It is the role of the BC strategy to
enforce global coherence over the set of local subpaths.
Thus, it is the BC strategy which provides some degree
of confidence that the developing solution path is likely
to be a prefix of a complete solution path.

For example, the wind break BC strategy given
above can be used by traverse to synthesize a set of
SCRs for the placement of tile G in its intended location
before the entire set of SCRs for the overall problem
has been produced. This means that the execution sys-
tem can, if necessary, move G into place while further
projection is carried out.

Once the entire BC strategy has been satisfied, the
execution system will have a set of SCRs describing
a single correct behavior. This initial set of control
rules has a certain probability of satisfying the given
goal. In the second phase of our approach, we use
an algorithm called robustify to incrementally increase
the probability of BC satisfaction by synthesizing ad-
ditional control rules that handle “error” states the
execution system is likely to encounter when following
the initial SCRs. Put simply, robustify scans along the
original satisfactory projection path looking for high-
probability “deviations”. A deviation from a path is a
transition from a state on the path to a state that is
not on the path. Robustify attempts to recover from
such deviations by finding alternative paths back to
the original path. Additional SCRs are compiled from
each additional recovery path found.

A triangle table (Fikes et al., 1972) is like a set of
SCRs designed to deal with each state in a sequence of
states, and a universal plan (Schoppers, 1987) is like a
set of SCRs which has 100% coverage of the space of

1990).

states. By using probabilities the algorithm achieves a
computationally effective balance between the l i i t e d
robustness of triangle tables and the absolute robust-
ness of universal plans.

only attempt in AI to address
time embedded control. Other

representative approaches include Brooks’ (1985) sub-
sumption architectuwz, the action nets of Nilsson et a1
(1990), Maes’ (1990) spreading activation approach,
and the situated automata of Rosenschein and Kael-
bliig (Rosenschein, 1989; Rosenschein & Kaelbliig
1986; Kdbling, 1987a,b, 1988). Each of these a p
proaches gives a designer a language and methodol-
ogy for specifying a control system. Other work in AI
has also considered the use of probabilities and tempo-
ral reasoning; for instance, see Dean and McDermott
(1987), Hanks (1990), and Dean and Kanazawa (1988).
Drummond and Bresina (1990) provide a more detailed
description of the traverse and robustify algorithms and
comparison with related work.

Conclusions
Our work is attempting to extend the tools of tradi-
tional AI planning to handle more complex domains.
In particular, we have studied goals with temporal
extent; the representation of, and reasoning mecha-
nisms for, the management of exogenous events; the
use of probabilities for controlling sear+ and the role
of plans in guiding an execution system. This research
is in early stages, and will benefit from a better under-
standing of work in the area of discrete event control
systems (b a d g e & Wonham, 1989).

Situated Control Rules are used by the execution
system as a set of local instructions constituting a par-
tially defined control program. Over time, the preci-
sion of the control program increases, and the probabil-
ity of the execution system “doing the right thing” goes
up. This means that, if necessary, the plan execution
system can act before a complete plan has been gener-
ated. Our approach is predicated on the claim that for
many problems there are strict limits on the system’s
knowledge of the environment and limits on the time
given to the system for the computation of a plan. Our
approach to managing search has addressed the issue of
time-limited computation, but has not presented any
solutions to the problem of l i i t e d knowledge of the
environment .

We are critically concerned with managing the com-
binatorial complexity of search required to synthesize
plans in domains such as the one we have briefly con-
sidered in this paper. Algorithms which are polyno-
mial in the number of possible states are too expensive
for practical use: heuristics must be used to dramati-
cally cut the number of alternative states considered,
and our work on traverse and robustify represents one
attempt to do this.

The problem considered in this paper is drawn from
a class of domains we call the NASA Tile World. We

have implemented a simulator for this class of domains
in Common Lisp on Sun workstations.' We have also
implemented a causal theory for the problem consid-
ered in this paper and are now attempting to collect
empirical evidence for the utility of our approach to
the synthesis of control rules.

Acknowledgements
Andy Philips has contributed significantly to our the-
ory and implementation. Additional members of the
ERE group, namely, Smadar Kedar, Rich Levinson,
Nancy Sliwa, and Keith Swanson have also provided
help along the way. Discussions with Peter Cheese-
man and Pat Langley have been informative and en-
tertaining. Thanks to Lisa Dent and John Allen for
comments on this paper. Final responsibility for all
errors and omissions rests, of course, with the authors.

References
Bresina, J., and Drummond, M. 1990. Integrating
Planning and Reaction: A Preliminary Report.
Proceedings of the 1990 AAAI Spring Symposium
Series (session on Planning in Uncertain, Unpre-
dictable, or Changing Environments).
Brooks, R. 1985. A Robust Layered Control Sys-
temfor a Mobile Robot. TechnicalReport 864, Ar-
tificial Intelligence Laboratory, Massachusetts In-
stitute of Technology, Cambridge, Massachusetts.
Chapman, D. Nonlinear Planning: a Rigorous
Reconstruction. In Proceedings of IJCAI-85, pp.
1022-1024, Los Angeles, CA, 1985. International
Joint Committee on Artificial Intelligence.
Dean, T., and Kanazawa, K. 1989. A Model for
Projection and Action. Proceedings of IJCAI-89.
pp. 985-990.
Dean, T., and McDermott, D. 1987. Temporal
Database Management. AI Journal. Vol. 32(1).

Drummond, M., and Bresina, J. 1990. Anytime
Synthetic Projection: Maximizing the Probabil-
ity of Goal Satisfaction. Proceedings of AAAI-90.
Boston, MA.
Drummond, M. 1989. Situated Con-
trol Rules. Proceedings of Conference on Prin-
ciples of Knowledge Representation El Reasoning.
Toronto, Canada.
Ginsberg, M. 1989. Universal Planning: An (Al-
most) Universally Bad Idea. AIMagazine, Vol. 10,
No. 4. DD. 40-44.

pp. 1-55.

[9] Hanks, S. 1990. Projecting Plans for Uncer-
tain Worlds. Yale University, CS Department,
YALE/CSD/RR#756.

[lo] Fikes, R., Hart, P., and Nilsson, N. 1972. Learn-
ing and Executing Generalized Robot Plans. AI
Journal, V013, pp. 251-288.

[11] Fikes, R. and Nilsson. N. 1971. STRIPS: A New
Approach to the Application of Theorem Proving
to Problem Solving. AI Journal, Vol. 2, pp. 189-
208.

[12] Kaelbling, L. 1987a. An Architecture for Intelli-
gent Reactive Systems. Reasoning About Actions
and Plans. M. Georgeff and A. Lansky, Eds., Mor-
gan Kauffman.

[13] Kaelbliing, L. 1987b. REX: A Symbolic Language
for the Design and Parallel Implementation of
Embedded Systems. Proceedings of AIAA Confer-
ence on Computers in Aerospace. Wakefield, Mas-
sachuse t ts.

[14] Kaelbliig, L. 1988. Goals as Parallel Program
Specifications. Proceedings of the Seventh Na-
tional Conference on Artificial Intelligence. St.
Paul, Minnesota.

1151 Maes, P. 1990. How To Do the Right Thing. Con-
nection Science Journal. (Special Issue on Hybrid
Systems. J. Hendler, editor).

[IS] Newell, A. and Simon, H.A. 1963. GPS: a PrG
gram that Simulates Human Thought. In Feigen-
baum, E.A. and Feldman, J. (eds) Computers and
Thought McGraw-Hill, New York.

[17] Nilsson, N., Moore, R., and Torrance, M., ACT-
NET: An Action Network Language and its Inter-
preter. Draft paper, Stanford Computer Science
Department, February 1990.

[18] Nilsson, N. 1980. Principles of Artificial Intelli-
gence. Tioga Publishing Company, CA.

[19] Ramadge, P. and Wonham, W. 1989. The Con-
trol of Discrete Event Systems. Proceedings of the
IEEE. Vol. 77, No. 1 (January). pp. 81-98.

[20] Rosenschein, S. 1989. Synthesizing Information-
Tracking Automata from Environment Descrip
tions. Proceedings of Conference on Principles of
Knowledge Representation El Recrsoning. Toronto,
Canada

[21] Rosenschein, S. and Kaelbliig, L. 1986. The Syn-
thesis of Digital Machines with Provable Epis-
temic Properties. Proceedings of Workshop on
Theoretical Aspects of Knowledge. Monterey, CA

[22] Schoppers, M. 1987. Universal Plans for Reactive
Robots in Unpredictable Environments. Proceed-

(March 13-14).

r = -- - - _ - -
ings of the Tenth International Conference on Ar-
tificial Intelligence. pp. 1039-1046, Milan, Italy. 'The simulator is available free by anonymous FTP;

contact the authors for information.

